Feasibility of an Imaging Motional Stark Effect Diagnostic for Edge Current Measurements on MAST-U

S. Gibson1, A. Thorman2, C. A. Michael3, M. Carr2, N. C. Hawkes2, J. Howard4 and R. M. Sharples1

An Imaging Motional Stark Effect (IMSE) diagnostic has been designed for MAST-U. Synthetic diagnostic images were forward modelled including realistic spectral broadening effects. The diagnostic would be capable of recovering edge current features with a width on the order of ~2cm. At a temporal resolution of 1ms, the polarisation angle profile can be measured with an uncertainty of $\sigma \approx 0.5^\circ$.

Motivation

Local measurement of the edge current density is necessary for:
- Verification of neoclassical current models
- Improved Edge Localised Mode (ELM) stability analysis

The IMSE Diagnostic

The IMSE diagnostic[3] is a *polarisation interferometer*, which captures 2D snapshot images of neutral beam emission.

Diagnostic Design

Waveplates

Choose L to maximise fringe contrast.

Bandpass Filter

Choose CWL to capture only full energy beam component and tilt filter $\sim 2\nu$ to track doppler shift across field of view.

Fringes

Fringes arise from thick waveplates.

Field widening

No field widening

Lenses

Camera lens focal length determines image fringe frequency. Require at least 10 pixels per fringe for acceptable resolution.

Modelling Performance

Forward modelled noisy images were generated to retrieve the polarisation angle uncertainty in a typical MAST scenario, when considering shot, read and dark noise according to the camera specifications.

Spectral Broadening

To what extent do spectral broadening effects impact the achievable resolution of edge current features?

Edge Current Scenario

Using a high power MAST-U plasma scenario, an increase in the polarisation angle of 3 degrees is observed over the pedestal region, indicative of edge bootstrap current.

Broadening effects limit the maximum spatial resolution of these features to 2cm.

Outlook

To what extent can we resolve bootstrap current vs radial electric field? Determine performance in other MAST-U scenarios Determine improvement in equilibrium reconstruction using IMSE as a constraint