Motivation

- Coherent filamentary structures dominate turbulent cross-field particle transport in tokamaks [1]
- These intermittent structures' properties govern scrape off layer (SOL) density profile shape [2]
- Unfiltered fast visible cameras (~100 kHz) can passively collect large quantities of filament data
- A better understanding of filaments’ dependence on plasma properties can help minimise wall erosion and maximise machine lifetime

Technique

- Unfiltered fast camera collects mostly \(D_w \) light
 - Intensity, \(I \), function of neutral & electron density, \(n_0 \) & \(n_e \), and electron temperature, \(T_e \)
 - \(I = n_{df} (n_0, T_e) \)

1. Images are processed to enhance filaments:
 - Background subtraction, noise reduction, sharpening
2. Project field lines onto images:
 - Trace field line (FL) grid with Eeff+ equilibrium
 - Project FLs onto camera view
 - Extract pixel intensities along FLs
3. Intensity pseudo-inversion (PI) into \(R - \phi R \) space:
 - FLs parameterised by \((R, \phi R) \) coordinate of intersection with midplane \(Z = 0 \)
 - Representative intensity along FLs, given by
 - (geometric mean)
4. Identify filaments:
 - Ellipses fitted to 2D intensity peaks to extract position and widths

Benchmarking

- A synthetic diagnostic enables analysis of camera frames with known filament properties
- Enables algorithmic benchmarking and error quantification
 - Detect 80% of input filaments
 - 30% false positive rate
- See more in T. Farley et al., RSI (2018)

Analytic Framework

- Describes SOL density profile shapes and statistics given input filament properties
- Assumes constant generation of independent filaments
- Inputs:
 - Distribution of initial amplitudes, \(P_{\mu 0} \)
 - Distribution of perp. widths, \(P_w \)
 - Average waiting time, \(\tau_w \)
 - Radial shape, \(A(r - r_{sep}) \)
 - Parallel drainage rate, \(F(t) \)
 - Radial velocity variation, \(V(\phi)(t) \)

Pseudo-Langmuir probe analysis

- Taking radial slices through the PI gives time varying radial emission profiles
- Time averaged radial shows exponential fall off with characteristic flattening in the far SOL

Filament statistics

- Filament statistics are calculated to inform inputs to the analytic framework
- Variance of fluctuations
 - Variance increases outside the Separatrix as commonly observed
- Toroidal filament separation
 - Exponential distribution indicates toroidal positions are independent
 - No effective quasi-mode number
- Waiting times
 - Exponential distribution indicative of Poisson process
 - Support assumptions in analytic framework
 - See Fulvio Militello’s invited talk (Friday 11.00, Room: 102ABC)

Future work

- Analysis of SOL density profile flattening and broadening study
- Use analytic framework to interpret phenomena given measured filament statistics
- Generate large filament database to explore dependence of filament properties on machine and physics parameters

This work was funded by the RCUK Energy Programme [grant EP/P012450/1] and the Engineering and Physical Sciences Research Council [grant EP/K004178/1]
For further information on data and models please contact publicationsmanager@ccfe.ac.uk

References